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ABSTRACT

Boolean matrix factorization (BMF) approximates a given bi-
nary input matrix as the product of two smaller binary fac-
tors. As opposed to binary matrix factorization which uses
standard arithmetic, BMF uses the Boolean OR and Boolean
AND operations to perform matrix products, which leads to
lower reconstruction errors. BMF is an NP-hard problem. In
this paper, we first propose an alternating optimization (AO)
strategy that solves the subproblem in one factor matrix in
BMF using an integer program (IP). We also provide two
ways to initialize the factors within AO. Then, we show how
several solutions of BMF can be combined optimally using
another IP. This allows us to come up with a new algorithm: it
generates several solutions using AO and then combines them
in an optimal way. Experiments show that our algorithms out-
perform the state of the art on medium-scale problems.

Index Terms— alternating optimization, Boolean matrix
factorization, integer programming

1. INTRODUCTION

Low-rank matrix approximations (LRMAs) are popular meth-
ods in machine learning, and have successfully been applied
in a wide variety of applications such as document classifica-
tion, community detection, hyperspectral unmixing and rec-
ommender systems, to cite a few; see, e.g., [1, 2, 3]. LRMAs
perform dimensionality reduction by approximating an input
data matrix as the product two factors of smaller sizes. De-
pending on the problem at hand, different matrix models can
be considered. Examples include principal component anal-
ysis (PCA) and its variants such as sparse [4] and robust [5]
PCA, and nonnegative matrix factorization (NMF) [6]. If the
input matrix has elements in {0, 1}, then it makes sense to
impose the factors to have elements in {0, 1} as well, lead-
ing to binary matrix factorization (bMF) and Boolean matrix
factorizations (BMF) [7, 8]. However, due to bMF using the
standard addition and multiplication, the approximation will
typically produce elements that are not in {0, 1}. BMF uses
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the Boolean OR and AND operations to guarantee the ap-
proximation to be binary, which improves the interpretabil-
ity of the model. BMF is a difficult combinatorial problem,
and many works have been dedicated to the computation of
BMFs [9, 10, 11, 12, 13]; see also [14] for a recent survey.

This paper proposes new ways to compute BMFs, and
is organized as follows. In Section 2, we formally define
BMF. In Section 3, we describe our proposed alternating op-
timization (AO) algorithm for BMF where the subproblems
are quadratic integer programs (IPs). We also provide two
initialization strategies for the AO algorithm. In Section 4,
we provide an IP formulation to optimally combine several
BMF solutions. In Section 5, we show that our proposed al-
gorithms outperform the state of the art on four medium-scale
real-world data sets.

2. BOOLEAN MATRIX FACTORIZATION (BMF)

Let us first define the matrix Boolean product.

Definition 1 (Boolean product). Given two Boolean matrices,
W ∈ {0, 1}m×r and H ∈ {0, 1}r×n, their Boolean product
is denoted W ◦H ∈ {0, 1}m×n and is defined for all i, j as

(W ◦H)ij =

r∨
k=1

WikHkj , (1)

where ∨ is the logical OR operation (that is, 0∨0 = 0, 1∨0 =
1, and 1∨1 = 1). Interestingly, W◦H = min(1,WH) where
WH is the usual matrix product between W and H.

We can now define the BMF problem.

Definition 2 (BMF). Given a Boolean matrix X ∈ {0, 1}m×n

and a factorization rank r, BMF aims to find matrices
W ∈ {0, 1}m×r and H ∈ {0, 1}r×n that solve

min
W∈{0,1}m×r,H∈{0,1}r×n

∥X−W ◦H∥2F . (2)

In [7], it is proven that not only solving (2), but also approxi-
mating (2), is NP-hard.

BMF allows one to find subset of columns and rows of
X that are highly correlated, since the entries equal to one in
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each binary rank-one factor W(:, k)H(k, :) correspond to a
rectangular submatrix of X that should contain many entries
equal to one. Applications of BMF include role mining [15]
and bioinformatics [16, 17]; see also the recent survey [14].

3. ALTERNATING OPTIMIZATION (AO) FOR BMF

Most algorithms for LRMAs rely on iterative block coordi-
nate descent methods: the subproblem in H is solved for W
fixed, and vice versa. The reason is that these subproblems
are typically convex. For BMF, this is of course not the case.
However, the advances in IP solvers, such as Gurobi [18], al-
lows one to tackle medium-scale problems efficiently.

3.1. IP formulation for BMF subproblems

Assuming W is fixed in (2), we would like to solve the fol-
lowing Boolean least squares (BoolLS) problem in H, that is,
solve

min
H∈{0,1}r×n

∥X−min(1,WH)∥2F .

Because of the nonlinearity in the objective, this cannot be
solved directly with standard IP solvers. Note that the prob-
lem in each column of H is independent:

min
H(:,j)∈{0,1}r×n

∥X(:, j)−min(1,WH(:, j))∥2F . (3)

For simplicity, let h = H(:, j) and x = X(:, j). Given W
and x, we need to solve minh∈{0,1}r ∥x − min(1,Wh)∥2F .
Introducing the variable z = min(1,Wh), (3) can be refor-
mulated as follows:

min
h∈{0,1}r,z∈{0,1}m

∥x− z∥2F s.t.
Wh

r
≤ z ≤ Wh. (4)

In fact, for W, h and z binary, Wh
r ≤ z ≤ Wh if and only

if z = min(1,Wh), since Wh ∈ {0, 1, . . . , r}m. Now (4)
is a convex quadratic optimization problem with linear con-
straints over binary variables. Such problems can be solved
with commercial software, and we make use of Gurobi [18].

To give an idea of the computational time required for
Gurobi to solve (4), let us perform the following experiment
for various values of m and r. The setting is as follows: we
generate the entries of W and h using the uniform distribu-
tion in [0, 1], and then threshold all elements to convert them
to binary. For all ranks tested, apart from r = 50, if an el-
ement is larger than 0.7, it is converted to 1, otherwise we
convert it to 0. For r = 50, the threshold is set to 0.8. We
chose relatively sparse W and h to make sure min(1,Wh)
is not the all-one vector (in fact, we regenerate W and h if
min(1,Wh) is the all-one or all-zero vector). Then we set
x = min(1,Wh), and 10% of the entries of x are flipped
randomly1. Table 1 reports the results.

1The noiseless BoolLS problem is much easier to solve since hk = 1 if
and only if the support of the kth column of W is contained in that of x, that
is, W(:, k) ≤ x.

r\m 100 1000 5000 10000

2 0.002 0.02 0.47 1.8
5 0.003 0.03 0.47 1.87

10 0.005 0.04 0.56 2.2
20 0.012 0.12 2.4 12.0
50 0.049 2.52 38.0 235

Table 1. Average execution time in seconds over 30 trials of
Gurobi to solve noisy BoolLS problems (4) for various values
of m and r.

The results are encouraging since solving (4) can be done
exactly with Gurobi in a reasonable amount of time, even for
relatively large problems, e.g., it takes on average Gurobi 12
seconds to solve this problem with m = 104 and r = 20.
Note that one could also use a timelimit for Gurobi, so that
Gurobi would return the best solution found within the allot-
ted time (often IP solvers take much more time to guarantee
global optimality rather than finding the optimal solution).

3.2. AO for BMF

We can now solve BMF via AO over the factors W and
H alternatively. Since ∥X − min(1,WH)∥2F = ∥X⊤ −
min(1,H⊤W⊤)∥2F , the problem in W for H fixed has the
same form. We update H in a column-by-column fashion
by solving the independent BoolLS of the form (3), and
similarly for W row by row. Algorithm 1 summarizes the
AO strategy. We have added a safety procedure within AO
(steps 4-8): it may happen that some rows of H are set
to zero (for example, if W is not well initialized). In that
case, we reinitialize these rows as the rows of the residual
R = max

(
0,X − max(1,WiHi)

)
whose entries have the

largest sum. This guarantees that the error will decrease afer
the update of W.

Typically, AO needs a very small number of iterations to
converge, given the combinatorial nature of the problem. As
we will report in Section 5, among more than 6000 runs on 4
datasets with 3 different ranks, on average 3.7 iterations are
needed, with a maximum of 14.

3.3. Initialization of AO

In this section, we provide two initialization strategies for
AO-BMF, that is, Algorithm 1.

Randomly selecting columns or rows of X AO-BMF only
requires W to be initialized. By symmetry, it could also be
initialized only with H, starting the AO algorithm by opti-
mizing over W. A simple, fast and meaningful strategy to
initialize AO-BMF is to initialize W (resp. H) with a subset
of the columns (resp. rows) of X, that is, set W = X(:,K)
(resp. H = X(K, :)) where K is a randomly selected set of r
indices of the columns (resp. rows) of X.



Algorithm 1 AO algorithm for BMF - AO-BMF
Input: Input matrix X ∈ {0, 1}m×n, initial factor matrix

W0 ∈ {0, 1}m×r, maximum number of iterations max-
iter.

Output: W ∈ {0, 1}m×r and H ∈ {0, 1}r×n such that X ≈
min(1,WH).

1: i = 1, e(0) = ∥X∥2F , e(1) = ∥X∥2F − 1.
2: while e(i) < e(i− 1) and i ≤ maxiter do
3: Hi = BoolLS(X,Wi−1).
4: K = {k |Hi(k, :) = 0}.
5: if K ̸= ∅ then
6: R = max

(
0,X−max(1,WiHi)

)
.

7: Hi(K, :) = R(I, :), where I contains the indices
8: of the |K| rows of R with largest sum.
9: end if

10: Wi = BoolLS(X⊤,H⊤
i )

⊤.
11: i = i+ 1.
12: e(i) = ∥X−min(1,WiHi)∥2F .
13: end while
14: return (W,H) = (Wi,Hi).

NMF-based initialization The second initialization we
propose relies on NMF. NMF approximates X with WH
where W and H are nonnegative. We use an NMF algorithm
from https://gitlab.com/ngillis/nmfbook/
which itself initializes the entries of W and H using the
uniform distribution in [0, 1]. Once an NMF solution is com-
puted, we binarize it using the following two steps:

• Normalize the columns of W and rows of H such
that max(W(:, k)) = max(H(k, :)) for all k, us-
ing the scaling degree of freedom in NMF, that is,
W(:, k)H(k, :) = (αW(:, k))(α−1H(k, :)) for α > 0.

• Set the entries of W and H to 0 or 1 using a given
threshold δ which is generated uniformly at random in
the interval [0.3, 0.7]. An alternative would be to use
a grid search approach to determine δ, similar to [8,
19]. However, we observed that selecting δ randomly
performs better on average.

4. COMBINING MULTIPLE BMF SOLUTIONS

Algorithm 1, AO-BMF, is able to relatively quickly generate
locally optimal solutions for (2), in the sense that they cannot
be improved by optimizing W or H alone. A first natural
approach to generate good solutions to BMF is using multiple
initializations, and keeping the best solution. We will refer
to this strategy as multistart AO (MS-AO). Generating more
than one solution using several initializations is typically key
as it allows to better explore the search space.

However, it is possible to combine a set of solutions in
a more effective way. Assume we have generated p rank-

r BMFs: W1H1, . . . ,WpHp. This gives rp binary rank-
one factors, namely Wℓ(:, k)Hℓ(k, :) for k = 1, . . . , r and
ℓ = 1, . . . , p. Let us denote these rank-one binary matrices
Ri for i = 1, . . . , N with2 N = rp. To generate a better
rank-r BMF, we can pick r rank-one binary factors among
the Ri’s, by solving the following combinatorial problem:

min
y∈{0,1}N

∥∥∥X−min
(
1,
∑
i

yiRi

)∥∥∥2
F

such that
∑
i

yi = r.

The variable y ∈ {0, 1}N encodes the r selected rank-one
factors, that is, yi = 1 if Ri is selected in the BMF. As for
BoolLS, we can reformulate this problem as a quadratic IP:

min
y∈{0,1}N ,Z∈{0,1}m×n

∥X− Z∥2F (5)

such that
N∑
i=1

yi = r,

∑N
i=1 yiRi

r
≤ Z ≤

N∑
i=1

yiRi.

Denoting y∗i the optimal solution of (5), the rank-r BMF ob-
tained,

∑
i y

∗
i Ri, is guaranteed to be at least as good as all

the solutions {WiHi}pi=1, since they are feasible solutions
of (5).

Gurobi can solve medium-scale problem of the form (5)
in a reasonable amount of time. Table 2 reports the time to
solve (5) for m = n = 101, r = 5, and N = 2k 50 for k =
0, 1, . . . , 4. For example, to combine 160 rank-5 solutions
(hence 800 rank-one factors) of a 101-by-101 matrix, it takes
about 30 seconds.

N 50 100 200 400 800
time (s.) 4.0 4.3 7.6 14.2 30.6

Table 2. Run times to combine N rank-one factors for a 101-
by-101 matrix with r = 5 (namely, the apb data set, see Sec-
tion 5).

In practice, if N is too large, we do not need to take into
account all rank-one factors, and can only consider rank-one
factors corresponding to the best BMFs.

Finally, once a solution combining several BMFs is com-
puted, we will further improve it using AO.

We will refer to this algorithm, namely generating p so-
lutions with AO-BMF, then combining them solving (5), and
then applying AO to that solution as MS-Comb-AO.

5. NUMERICAL EXPERIMENTS

All experiments are performed with a 12th Gen Intel(R)
Core(TM) i9-12900H 2.50 GHz, 32GB RAM, on MAT-
LAB R2019b. The code and data sets are available on
https://gitlab.com/ngillis/BooleanMF

2In practice, we delete duplicated rank-one factors so that N ≪ rp.

https://gitlab.com/ngillis/nmfbook/
https://gitlab.com/ngillis/BooleanMF


Data sets We will perform experiments on four real data
sets used in [20], and which come from [21, 22]; see Table 3.

zoo heart lymp apb
m× n 101× 17 242× 22 148× 44 105× 105

Table 3. Four binary real-world data sets.

As in [20], we use r = 2, 5, 10 for all data sets. In [20], au-
thors proposed two non-trivial IP-based approaches for BMF
that perform well against the state of the art (they used a 20
minutes time limit for their method), namely against a greedy
scheme [20], ASSO and ASSO++ [7], a penalty formulation
from [8], and an NMF-based heuristic. Table 4 reports the
best result of all these methods for the four data sets. From
now on, we will report the result of a BMF by comparing it
with the best solution in Table 4.

r = 2 r = 5 r = 10

zoo 271 126 39
heart 1185 737 419
lymp 1184 982 728
apb 776 684 573

Table 4. Objective function ∥X−min(1,WH)∥2F of the best
solution found by various algorithms in [20, Table 4, page 20].

Results from two other papers We have also run two
recent algorithms, from [11] and [13], on these data sets.
The method in [11] is based on a continuous reformulation
of BMF and uses alternating proximal projected gradient
method to solve it. We have used the parameters of the al-
gorithm recommended by the authors. Table 5 reports the
results. Out of curiosity, we initialized AO with the best
solutions found. We observe in Table 5 that AO is able to
significantly improve these solutions, showing that the con-
tinuous reformulations of [11] is not able to generate locally
optimal solutions.

r = 2 r = 5 r = 10

zoo +11 | 0 +5 | -1 +18 | +5
heart +65 | +18 +29 | -1 +33 | +26
lymp +64 | +25 +88 | -10 +203 | +60
apb +72 | +30 +59 | +43 +33 | +15

Table 5. Best result obtained with the method in [11] (left),
and result of this best solution improved by AO (right). The
numbers indicate the difference compared with the best val-
ues in Table 4. A negative value means an improvement, a
positive value means a worse solution.

Next, we show the results for the method in [13]. Note
that this paper provides a rather general approach, allowing
for other Boolean operations between the factors to approxi-
mate the entries of X. Their approach is also based on some
continuous reformulations, and the use of gradient and de-
scent methods. Table 6 reports their result, using 15 trials
where each trial uses 10 random initializations, each opti-
mized with 2000 iterations. We also use AO to improve the
best solutions found by this method, and observe a similar
behavior as for the method from [11].

r = 2 r = 5 r = 10

zoo +2 | 0 +7 | +4 +10 | +4
heart +165 | +9 +33 | +4 +86 | +57
lymp +214 | -3 +49 | -16 +123 | +5
apb +48 | 0 +51 | +23 +112 | +43

Table 6. Best result obtained with the method in [13] (left),
and result of this best solution improved by AO (right). The
numbers indicate the difference compared with the best values
in Table 4.

In summary, on these data sets, we observe that the algo-
rithms from [11, 13] provide solutions which are much worse
than the best solutions provided in [20], and that AO can con-
siderably improve the solutions of these two methods, some-
times obtaining better solution than the best from [20] (e.g.,
for the lymp data set with r = 5).

Results of our proposed algorithms Let us provide the re-
sults for our two algorithms.
[1.] Multiple starts of AO-BMF (MS-AO). We generate as
many BMFs as possible with AO-BMF within the time T ,
and return the best solution. The initialization of AO-BMF is
chosen alternatively as one of the two strategies (NMF-based
or random columns/rows of X). Table 7 reports the results for
T equal to 30 seconds and 5 minutes.

r = 2 r = 5 r = 10

zoo 0 | 0 -1 | -1 +3 | 0
heart +2 | +2 -1 | -1 0 | 0
lymp -10 | -10 -25 | -32 -15 | -34
apb 0 | 0 +6 | -6 +4 | +2

Table 7. Results of the MS-AO strategy for 30 seconds (left)
and 5 minutes (right). The numbers indicate the difference
compared with the best values in Table 4.

Quite surprisingly, MS-AO is already able to perform on
par or improve upon the state of the art. With a 30 seconds
time limit, it does on 8 out of 12 cases: 5/12 cases with im-
provements, sometimes significant as for the lymp data set,



and 3/12 cases with the same objective. However, for 4 data
sets, it is not able to achieve the best solution reported in Ta-
ble 4, although the generated solutions are only slightly worse
(+6 at most). With a 5 minutes time limit, it performs better
or on par on 10 out of the 12 cases, and it produces a slightly
worse solution in two cases (+2).

To give an idea of the performance of Gurobi on these
medium-scale problems, Table 8 reports the number of BMFs
generated within 5 minutes for each data set, as well as the av-
erage number of iterations required for AO to converge. The
average number of iterations for AO to converge is 3.7, and
the largest number of iterations AO needed among these 6165
BMFs is 14.

r = 2 r = 5 r = 10

zoo 844 | 3.3 703 | 3.2 596 | 3.3
heart 503 | 3.0 280 | 3.5 484 | 3.5
lymp 558 | 3.3 568 | 4.2 269 | 4.8
apb 591 | 3.7 381 | 4.2 388 | 4.8

Table 8. Number of BMFs generated via AO within 5 minutes
(left), and average number of iterations required for AO to
converge (right).

[2.] Multiple starts, combination and AO (MS-Comb-
AO). As explained in Section 4, we generate as many BMFs
as possible with AO-BMF (as for AO-MS) within time 3T/4,
and then combine them by solving (5) with a time limit of
T/4. We used the same random seed so that the solutions
generated are the same as for AO-MS, except that less solu-
tions are generated, since only 3/4 of the total time is spent
for that. Table 9 reports the results.

r = 2 r = 5 r = 10

zoo 0 | 0 -1 | -1 0 | 0
heart +2 | 0 -1 | -1 0 | 0
lymp -10 | -10 -25 | -32 -15 | -34
apb 0 | 0 -1 | -6 +2 | -7

Table 9. Results of the MS-Comb-AO algorithm for 30 sec-
onds (left) and 5 minutes (right). The numbers indicate the
difference compared with the best values in Table 4.

For some data set, AO is already able to generate very
good solutions, and hence solving (5) is not useful, e.g., for
the lymp data set. However, for most cases, this combination
is beneficial, sometimes significantly. In particular, with the
timelimit of 30 seconds on the apb dataset for r = 5, the
best solution found by AO-MS has error 689 (+6) while the
combination leads to an error of 682 (-1); for the zoo data
set with r = 10, it goes from 42 (+3) to 39 (0). A similar
behavior is observed for 5 minutes: for the apb data set with

r = 10 from +2 to -7, and the heart data set from +2 to 0.
To conclude, MS-Comb-AO with a 5-minute timelimit is

able to either perform on par with the state of the art (we sus-
pect that for these data sets, the corresponding solutions are
optimal), or outperform it, sometimes significantly (in partic-
ular for the lymp data set).

Experiment on facial images As a last experiment, let us
apply AO-BMF to a larger data set, the well-known CBCL
facial images. It was used in the seminal paper of Lee and
Seung to show that NMF is able to extract facial features [6].
Let us apply AO-BMF on this very same data set. Each col-
umn of the data matrix X ∈ R361×2429 contains a vectorized
facial image of size 19 × 19, and is not binary but satisfies
X(i, j) ∈ [0, 1] for all (i, j). Quite interestingly, AO-BMF
can be applied to any input matrix X, even if it is not bi-
nary. We use the NMF-based initialization for AO-BMF with
r = 20, and it converges in 15 iterations within about 1 hour.
AO-BMF provides a binary approximation of X with rela-
tive error ∥X−min(1,WH)∥F

∥X∥F
= 55.94%. Figure 1 displays the

meaningful binary facial features extracted by AO-BMF as
the columns of W .

Fig. 1. Facial features extracted by AO-BMF on the CBCL
data set.

6. CONCLUSION AND FURTHER WORK

In this paper, we have designed an alternating optimization
(AO) strategy to tackle Boolean matrix factorization (BMF)
using interger programming (IP). We have also shown how
to combine several solutions in an optimal way, using IP as
well. We finally showed how these two strategies are able to
outperform the state of the art on 4 real-world medium-scale
data sets.

Further work includes the adaptation of our algorithms
for large-scale data sets. A simple, yet possibly effective ap-



proach, is to use a time limit for Gurobi to tackle the IP sub-
problems. Typically, Gurobi is able to produce quickly high
quality solutions. The design of fast heuristic algorithms to
solve the Boolean least squares problem (4) would also be
useful, since we have validated the effectiveness of AO for
BMF. Another line of work, that we are currently exploring, is
to design more sophisticated combination strategies. This has
allowed us to generate even better solutions for three cases:

• for lymp with r = 5, a BMF with error 939 (-43),
• for lymp with r = 10, a BMF with error 680 (-48).
• for apb with r = 5, a BMF with error 677 (-7).

We will present these results in an extended version of this
paper.

Acknowledgments We thank Sebastian Miron for sending
us his BMF code [13], and Sebastian Dalleiger for providing
us with good parameters for his BMF algorithm [11]. The au-
thors acknowledge the support by the F.R.S.-FNRS and the
FWO (EOS, O005318F-RG47), by the European Research
Council (ERC, consolidator grant no 101085607), and by the
Francqui Foundation.

7. REFERENCES

[1] I. Markovsky, Low rank approximation: algorithms, im-
plementation, applications, Springer, 2012.

[2] M. Udell, C. Horn, R. Zadeh, S. Boyd, et al., “Gener-
alized low rank models,” Foundations and Trends® in
Machine Learning, vol. 9, no. 1, pp. 1–118, 2016.

[3] N. Gillis, Nonnegative Matrix Factorization, SIAM,
Philadelphia, PA, 2020.

[4] H. Zou, T. Hastie, and R. Tibshirani, “Sparse princi-
pal component analysis,” Journal of Computational and
Graphical Statistics, vol. 15, no. 2, pp. 265–286, 2006.

[5] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust
principal component analysis?,” Journal of the ACM
(JACM), vol. 58, no. 3, pp. 1–37, 2011.

[6] D. D. Lee and H. S. Seung, “Learning the parts of ob-
jects by non-negative matrix factorization,” Nature, vol.
401, no. 6755, pp. 788–791, 1999.
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